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Abst r act 

A theoretical and experimental investigation of the feasibility of 

predicting the quality of liquid-solid hydrogen mixtures from the mass  

fraction of vapor pumped off in the freeze-thaw process has been com- 

pleted. 

were used to  check the correctness of the qualities predicted from the 

measured mass  fraction pumped off in forming liquid-solid mixtures. 

all cases  only freshly made mixtures were used. 

Three independent methods of experimental quality determinations 

In 

It is suggested that an independent means of determining the edge 

of the triple point region, such as measurement of the vapor ixessure,  

be used. With this modification, measurement of the mass fraction 

pumped off during the freeze-thaw process provides a simple, non- 

destructive and accurate method of bulk quality determination. 

method is  not appropriate for cases in which a partial transfer from the 

dewar i s  made and it requires accurate knowledge of the heat leak if long 

storage t imes a re  to  be used. Finally, since the method is only as 

accurate as  the accuracy of the flow and liquid volume measurements, 

possible low accuracy in l a r g e  volume gas flowmeters places a restriction 

on the method. 

The 

Key Words: Freeze-thaw process, liquid-solid hydrogen mixtures, 

quality determination, rocket propellent, slush hydrogen 
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1. Introduction 

Current interest in liquid-solid mixtures of parahydrogen as a 

potential rocket propellent (see Bibliography) has lead to  this theoretical 

and experimental investigation of one method of determining the liquid- 

solid qualities. A previous investigation [ Carney et al. , 19641 was con- 

cerned with the general problem of quality determination while this study 

concentrates on one specific method and demonstrates that the measure-  

ment of one cri t ical  parameter (mass fraction removed during production 

pumping) is adequate for the determination of liquid-solid quality. 

production method under consideration, the "freeze-thaw" process 

[ Mann et al., 19661, is different than that used by Carney and co-workers 

[ 19641 but this difference does not affect determination of quality. 

The 

In the freeze-thaw method of forming a triple-point mixture of 

hydrogen, a quantity of liquid is partially evaporated under the reduced 

pressure  maintained by a vacuum pump. 

approximately equal to  the latent heat, is experienced by the remaining 

liquid or  liquid-solid mixture. 

c z s s  o r  path fa?lcv.~ed, it is p s s i h l e  to predict the end state, i. e. , the 

liquid-solid quality as a function of the mass of the vapor removed. 

A refrigeration effect, which is 

By specifying the initial state and the pro- 

A thermodynamic analysis of the freeze-thaw process was pre-  

sented in NBS Report 8881 , Section 10 [ Mann et al., 19651 , and is in- 

cluded in the Appendix. 

might result  in a substantial reduction in the actual quality from that 

predicted by consideration of an idealized process, an experimental deter-  

mination of quality versus the mass of vapor pumped off was made. 

Since the irreversibil i t ies in the actual process 

Accurate knowledge of the quality of a liquid-solid mixture is 

necessary in order to: 

1. 

2. 

3. Determine the transport properties 

Determine the mass  in a given volume 

Determine the slush storage time possible 
t 



2. Symbols and Properties 

The symbols used in the text a r e  given below. The values of the 

thermodynamic properties of parahydrogen were taken from the tables of 

Roder e t  al. [ 19651 except as noted. 

C F  

C 
P 

E 

F 

F 
C 

FT 

v l  
F 

v2 
F 

F' 

C 
F' 

IT 

v l  F' 

F'v2 

V 
h 

I 

flowmeter correct  ion fact o r  

specific heat at constant pressure 

heater potential in volts 

quality, i.e. the mass  fraction of the solid 

quality measured by the calorimetric method 

quality predicted from m /m 

quality measured from the change in volume on 

g 

free zing 

quality measured from the change in volume on 

m e It in g 
m g *'HL 

) ' mT ( s t -  s s )  "adjusted" quality F' = F (1 - - m 

"adjusted" quality by the calorimetric method 

"adjusted" quality predicted from m /m 

"adjusted" quality from the change in volume on 
g 

free zing 

"adjusted" quality from the change in volume on 

melting 

specific enthalpy of the vapor 

heater current in amperes 

m or M initial mass  before pumping down to the tr iple point, 

or the initial mass  before solid formation 

mass of the vapor pumped from the liquid as m or M 
g g 

measured by the flowmeter 

2 



Am iiq 
0 

Q 

Q 

Ql 

Q2 

QHe ate r 

Q~~ 

Q ’ ~ ~  

S 
S 

c 
Y 

V 

U 
V 

V 
S 

V 
V 

freezing 
AV 

m e It ing AV 

change in mass of the liquid 

heat leak rate from the environment 

the total heat leak during the pump down to  the 

tr iple point 

heat leak during the pump down to the tr iple point 

which is due to  the heat capacity of the dewar 

the heat leak during the pump down to the t r ia le  

point which comes from the environment 

the heat input from the heater 

the heat input during the heating period which i s  

due to the heat leak from the environment 

the heat input during the solid formation per:od 

which i s  due to the heat leak from the 

environment 

specific entropy of the liquid 

specific entropy of the solid 

specific entropy of the vapor 

specific internal energy of the liquid 

specific internal energy of the vapor 

specific volume of the liquid 

specific volume of the solid 

specific volume of the vapor 

change i n  the flowmeter reading 

change in  volume of the liquid-solid mixture 

dur ing  solid formation 

change i n  volume of the liquid-solid mixture 

during sviici r ~ e k i i i g  

3 



the specific entropy change on melting; the value 

at the tr iple point is taken as 8. 50 joules/ 

g-mole [ Woolley et a l . ,  19481 

the specific volume change on melting; the value 

at the triple point is taken as 2.85 cc/gm-mole 

[ Woolley et al . ,  19481 

4 
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3. Description of the Apparatus 

3.1. General experimental arrangement 

. 

The experimental apparatus provides for three independent deter- 

minations of the liquid-solid quality. 

1) the heat input required to melt a batch of slush after i t  has been form- 

ed, 2) the volume change during solid formation, and 3) the volume 

change during melting. 

figure 2 shows the experimental dewar in detail. 

a r e  photographs of the apparatus. 

The quality is determined from 

Figure 1 is a schematic of the entire system; 

Figures3 through 5 

The arrangement shown in figure 1 allows for either pumping on 

the dewar (V-1 open and V-2  closed) or by-passing the pump ( V - 1  closed 

and V-2  open). 

meter,  or  the by-passing of both meters. Because of the wide variation 

in the flow between the boil-off measurements and the pumping measure- 

ments, two flowmeters with different capacities were used. The dewar 

may be filled with either hydrogen or  nitrogen gas  through V-10 and V - 8  

respectively. 

V-5, o r  filled with helium from the helium supply bottle. 

Valves V-3, V-4 and V-9  permit selection of either flow- 

The inside of the heater can either be evacuated through 

Figures 2 and 5 show the experimental space in greater detail. The 

experimental container is a 6-inch I. D. x 35-inch Pyrex dewar. It is 

shielded by a second Pyrex dewar filled with liquid nitrogen. Each dewar 

has a pair of unsilvered vertical strips oriented 180" to  each other which 

permit visual observation of the liquid hydrogen. 

supported by ball bearings situated at the heater and at the radiation shield. 

A magnetic coupling transmits the motion from the pneumatic s t i r r ing 

motor t o  the s t i r r ing shaft inside the dewar. This coupling provides a 

hermetic shaft seal, allowing the dewar to  be operated at low pressures  

without danger of air leakage. 

The stirring shaft is 

5 
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Figure 2. Dewar Cross Section 
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Figure 3. Photograph of the Apparatus 
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Figure 4. Photograph of the Vacuum Pump 
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Figure 5. Photograph of the Inner Assembly 
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The heater is a diffusion pump heater encapsuled in a 4-inch 

O.D. by 1-inch copper cylinder. It is supported by a 1/4-inch stainless 

steel  tube, which contains the heater leads, and three 1/8-inch stainless 

steel  rods. 

3.2. Instrumentation 

3.2.1. Electrical energy measurement 

The electrical  energy introduced into the heater was measured by 

the arrangement shown in figure 1. 

ments used are as follows: 

The specifications for the instru- 

Volt meter 

Sensitive Re search Instrument Corporation 

A. C. Volt Meter 

Model DEW 

Scale, 0 to  75 volts 

Sensitivity 0.1 volts 

Ammeter 

Sensitive Research Instrument Corporation 

A. C. Ammeter 

Model MIEW 

Scale, 0 to  1.5 amperes 

Sensitivity 0. 001 amperes 

Timer 

Dimc o - Gray Company 

CRA-LAB Universal Timer 

Type 171 

Sensitivity 0. 5 seconds 

11 



The heater power level is controlled by adjusting the heater 

voltage with a variable voltage transformer.  

the heater switch. 

pared to  a heater resistance of 71 Q. 

measured by the instruments i s  introduced into the experimental dewar. 

The electrical energy measurements were adjusted accordingly. 

power levels and heating times used in the experiment, a precision of about 

0.8 percent is estimated for the measurement of the heater energy input. 

The t imer  is controlled by 

The resistance of the heater leads is 0.2 ohms com- 

Thus 0.997 of the electrical  energy 

For  the 

3 . 2 .  2.  Liquid volume measurement 

The volume of the liquid o r  liquid-solid mixture was determined 

with the aid of a Wild cathetometer. The dewar was volume calibrated 

by filling it with water in one liter increments from a graduated flask. 

The distance of the liquid level from the dewar top plate was measured 

with the cathetometer. 

the top plate (Table 11) was then constructed in 1 l i ter  increments. 

interpolation between the 1 l i ter  increments was used in calculating the 

volume from a cathetometer reading. 

flected off a Scotchlite screen was used to illuminate tk liquid level so  

that it could be more easily sighted with the cathetometer. The pneu- 

matic motor driving the s t i r r e r  was shut off during the liquid level 

measurements in order  to obtain a relatively quiescent surface.  Even so, 

some difficulty was experienced in measuring the liquid level due to  

occasional sloshing of the liquid and difficulty in picking out the same 

spot in the liquid meniscus each time. It i s  estimated that this e r r o r  

in the liquid level measurement could be as high as 0. 2 mm. 

calibration indicates a variance in the dewar c ros s  section s o  that some 

additional e r r o r  in the calculated liquid volume may result  from inter-  

polating between the calibration points. 

liquid volume measurement is estimated at f 0. 5 percent for measurements 

A table of liquid volume versus distance from 

Linear 

The beam of a 1-kW sun gun, r e -  

The dewar 

The overall accuracy of the 

. 

1 2  



of the total volume. 

an additional e r r o r  as high as f 0.4 m m  in the liquid level measurement 

o r  0.008 l i ters,  although the indicated e r r o r  is somewhat less  than this. 

Measurements of changes in volume may contain 

3.2.3. Gas flow measurement 

The volume of gas pumped through the vacuum pump was measured 

by wet test  gas meters.  An American Meter Co. No. AL-20 with a rated 

capacity of 150 cfh was used during high flow rates and aPrecis ion 

Scientific Co. meter with rated capacity of 20 cfh was used during low 

flow rates. 

At the rates  of flow (up t o  120 cfh) which were achieved when 

pumping on the liquid, it was found that complete saturation of the gas 

could not be achieved with the water bubbler which was  used initially. 

It was decided to  run the dry gas  from the pump directly into the meter, 

and calibrate the meters  for this dry gas condition using the facilities of 

Public Service Co. of Colorado in Denver, Colorado. 

with a capacity of 1 0  f t  

?COO  vas =sed. The agreem-ent between a ser ies  of flow calibration points 

was generally within 1 part in 1000 for  a given flow rate. 

were made using air at 74°F  with a relative humidity of 1 0  to  15 percent. 

The calibration curve for the 150 cfh meter is given in figure 6 .  

overall accuracy of the flow measurement is estimated at f 0. 5 percent 

(see Section 5.3). 

A volume prover 

and a claimed accuracy of better than 1 part in 
3 

The calibrations 

The 

3.2.4. Experimental agreement 

The measurement of the change in the liquid level and the flow- 

meter  provide two 

gen pumped from the experimental dewar. 

give consistent results within the limits of the experimental e r ro r .  

ra t io  of the change in the mass measurement by the flowmeter to that 

independent means of determining the mass of hydro- 

These two methods should 

The 

13 



Figure 6 .  Flowmeter Calibration 
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given by the liquid level change is given in Table I. 

Table I 

Comparison of Mass Measurements 

Liquid Level Change 
Date mg/*mliq (mm) 

1/4/66 0.991 

1/19/66 0.995 

1/27/66 0.996 

2/21/66- A 0.992 

2/21/66-B 0.985 

2/23/66 0.993 

57.01 

71.24 

60.11 

33.67 

26.77 

96.33 

These values are within the limits of the experimental e r r o r  and 

indicate that the mass  of the vapor pumped off is probably known t o  with- 

in  the 0. 5 percent estimated. 

c 

. 
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4. Experiment a1 Procedure 

The following experimental procedure was used in making the 

quality determinations, 

Initial Preparation 

1. The apparatus was tested for leaks and attention was given 

to  liquid hydrogen safety precautions such as putting on grounding straps, 

lab coats, turning on ventilating fans etc. 

2. The system was purged with nitrogen gas, then hydrogen gas, 

and the experimental dewar was filled with liquid hydrogen. 

Heat Leak Measurement 

1. The flow rate  of the dewar boil-off gas was measured after the 

system came t o  equilibrium. 

imately 1 atm. 

for all the tests made to  maintain a reasonably uniform input of st irring 

work. 

This tes t  was made with the liquid at approx- 

The s t i r r ing motor was run at an inlet pressure of 5 psig 

2. A liquid-solid mixture of low quality was formed and the time 

required for the heat leak to  melt the solid was measured. 

Pump-down to  Triple Point 

The liquid was pumped down to the edge of the triple-point region 

by opening V-1 (figure 1) with all valves other than V-4 closed. 

ing measurements were recorded: 

The follow- 

1 .  

2. 

3.  

4. 

5. Flowmeter inlet pressure 

6 .  Flowmeter temperature 

7. Elapsed t ime 

Flowmeter at s ta r t  of recording period 

Flowmeter at finish of recording period 

Liquid level at start of recording period 

Liquid level at finish of recording period 

16 
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8. Initial dewar pressure.  

Some difficulty was experienced in determining the exact edge of 

the triple-point region. The criterion chosen for deciding when the 

triple-point boundary was reached was that there should be a few solid 

particles present and that they should melt only at a rate  considered 

consistent with the heat leak. 

at the end of the melting process presented the greatest difficulty since 

there  was a tendency to  overheat and melt all the particles. 

uncertainty in t e rms  of F, in the edge of the triple-point boundary is es t -  

imated to  be about 0.004. 

Finding the edge of the triple-point region 

The maximum 

Solid Formation 

Once the edge of the tr iple point was established, solid was formed 

freeze-thaw by alternately opening and closing V - 1  (figure 1) i. e., by the 

process. 

ing measurements were made: 

1. Flowmeter 

2. Liquid level 

3. Temperature of the flowmeter 

4. Elapsed time 

5. 

Melting 

The heater was then energized and the solid melted until the edge 

When the desired amount of solid had been formed, the follow- 

The fraction of the liquid volume that contained settled slush. 

of the triple-point boundary was again achieved. 

made, a new batch of slush would be made unless refilling of the dewar 

were required or  shut-down desired. 

After measurements were 

The specific measurements were: 

1. Volt meter 

2. Ammeter 

17 



3. Heater Time 

4. Elapsed time 

5. Liquid level 

18 
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5. Description of the Calculations 

The measurements made permit three independent evaluations 

of the liquid-solid quality together with the mass  fraction required, both 

at the triple-point, and in pumping down from 1 atm. 

5.1. Pump down to  triple point 

The heat leak t e r m  for the pump down is composed of two parts: 

1. The refrigeration required to  cool down the dewar walls and 

the heater which is given by 

Q1 = [(-'p) + (mcP) ] AT, and 
dewar heater 

2. The heat leak from the environment which is given bv 

0 

Q2 = Q x time of the pump down. 

For  the run of 2/23/66 these components were evaluated as Q, = 136 

joules and Q, = 960 joules; 

Since the theoretical 

(A8), (AlO) and ( A l l )  of the 

- 

the sum being 1096 joules. 

values of m /m calculated from equations 

Appendix were evaluated for p = 1 atm with 
g 

0 

Q/m = 0 and Q/m = 3.08 j/g-mole, it was necessary t o  adjust these 

calculations t o  the experimental conditions. 

expr e s s ion 

This was done using the 

\ m 
1 0 1 - 2  1 - ($; m 

0 0-1 

where m is the mass of the liquid at 1 atm and m 
0 1 

the mass at pressure 

P1. 

19 



The subscripts denote the following pressures:  

0 - one atm 

1 - initial pressure for the experiment, and 

2 - the triple-point pressure.  

m 

m The quantity 3 is calculated for the Q/m = 
1 

0 and Q/m = 

3. 08 joules/g-mole using linear interpolation to find (m /m ) 

(mg/mo)l -2'  Linear interpolation is then used between the values of 

(m /ml )  for Q/m = 0 and Q/m = 3.08 joules/g-mole for the experi- 

mental value of the heat leak. 

follows : 

and 
g 0 0 - 1  

g 
The values used for (m /m ) a r e  as 

g o  

For  Q = 0 

(m /m ) 1 atm to 0.9 atm 

(m /m ) 1 atm to the tr iple point 

0.00709 

0.1057 

g o  

g o  

For  Q/m = 3.08 j/g-mole 

(m /m ) 1 atm to  0.9 atm 
g o  

0.00727 

(m /m ) 1 atm to  the tr iple point 0.1088 
g o  

Since the amount of vapor which is removed in evacuating the 

space above the liquid was not included in the theoretical calculation of 

mg/m, the flowmeter reading must be reduced by this amount. Calcula- 

tions which assume a linear temperature distribution in the gas space 

above the liquid indicate that 22 l i t e rs  should be subtracted from the 

flowmeter reading. However, this results in a change in mass  which is 

about 2 percent less  than that indicated by the change in the liquid level. 

A correction of 10 l i ters,  which gives a mass  agreement that is about 
. 
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that obtained while pumping at the triple point, was used in the calculations. 

For  the pump-down to the triple point it is then estimated that m is known 

to about 1 percent instead 

the experiment. 

g 
of the 0. 5 percent claimed for the other parts of 

5. 2. Quality calculations 

C alo r imet r ic Method 

Q, 

where 

- 
QT - QHeater ' %eat leak 

= E x I x t ime x 0.997, and 
QHeater 

0 - - x heating period time. 
Qhe at leak Qhe at leak 

0 

Q is taken from figure 7. The factor 0.997 gives the fraction of the 

electrical  energy measured by the meters  which reaches the heater. 

Volumetric Method - Freezing 

- v  m A V  

(m - m ) (vc - v s )  
freezing c g  

F =  
vl  * 

g 

is the decrease in volume during solid formation. where 'freezing 
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Volumetric Method - Melting 

c 

I -  
me It ing AV 

F =  vZ (m - m ) (vt - vs) ' 
g 

( 4) 

where AV is the decrease in volume during solid formation. In all 

cases,  m is the mass at the beginning of the solid formation, so  that 

m - m 

r e  ache d. 

melting 

is the mass of the mixture when a mixture of quality F is 
g 

5.3. Mass of the vapor 

The mass of vapor removed by the pump was calculated from the 

flowmeter measurement since it gives greater precision than the liquid 

level measurement for small  mass changes. It was calculated from the 

expr e s s ion 

AV x CFT 
m =  

g V 
V 

(5) 

The total flowmeter correction factor, C F  is calculated from T '  

3 -  = C F  x C F 2 x C F  
CFT 1 

The correction factor C F  is obtained from the flowmeter calibration 

curve, figure 6, correcting from the hydrogen flow rate  to the air  flow 

ra te  by the expression 

1 

Mol. Wt. H2 )l/' = 0 . 2 6 .  
Mol. Wt. Air Air Rate = Hydrogen Rate x ( 
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The correction factor C F  corrects  for  the difference between 2 
the partial  pressure of the water in the flowmeter at the tes t  temperature 

and the calibration temperature of 74". It is  given by 

0.4  (P - 9) 
P 
C CF2 = 1 t 8 

where 

P = vapor pressure of water at 74"F, 

Pt 

P = ambient pressure.  

C 

= vapor pressure of water at the tes t  temperature and 

The factor 0.4 results from the fact that the measured relative humidity 

of the gas leaving the flowmeter was about 40 percent. 

The correction factor C F  corrects  for the vapor mass  that occupies 
3 

the space of the liquid evaporated from the dewar. It i s  given by 

v& 
C F 3  = 1 t- 

V 
V 

Typical values for the correction factor are:  

C F  = 0.988 

= 1.001 

CF3 = 1.002 

1 

CF2 

CFT = 0.991. 

It is concluded that the experimental uncertainty in the gas measurement 

is about f 0. 5 percent. 
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5.4. Mass of the liquid 

The volume of the liquid or  liquid-solid mixture in the dewar was 

taken from the dewar calibration, Table II, using linear interpolation. 

The mass was then determined by 

Table I1 

Dewar Calibrations 

Distance From Top Plate Total Volume AL For One Liter 
(mm) (liter s) (mm) 

737.86 

685.08 

633.21 

581. 51 

529.63 

479.25 

427.83 

378.14 

329.10 

277. 53 

3.000 

4.000 

5.000 

6.000 

7.000 

8.000 

9.000 

10.000 

i i ,  ooo 
12.000 

52.78 

51.87 

51.70 

51.88 

50.38 

51.42 

49.69 

49.04 

51.57 
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5. 5. Heat leak 

From the measurements of the dewar boil-off ra te  the heat leak 

was calculated by the expression 

0 Am 
time 

V 

Q = -  

V 

Measurement of the t ime required to  melt a quantity of slush with- 

out the aid of the heater gives a second means of heat leak determination, 

the expression being 

The rate of heat leak versus the liquid level i s  plotted in figure 7. 

5. 6. The adjusted quality F' 

The three experimentally determined values for the quality F may 

be compared directly to  the quality predicted from the measurement 

values of m /m and QhL/mT. A plot of F versus m /m would be 
g g 

meaningless, however, unless all the experimental F's had the same 

value of QIHL/mT. Equation ( A l 6 )  of the Appendix suggests a means of 

avoiding this difficulty. Solving equation (A1 6) for F, the following expres- 

sion is obtained. 

m mT F =  

m 
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. 

Further rearrangement yields the expression 

QHL 
m F(l - 3, ' mT (sL - s s )  

4 s  

A plot of the left-hand side of (8) versus m /m yields a straight 
g 

line passing through the origin with a slope of ( S  - s a ) / (  s4 - s ) equals 

1/0.130. Plotting the experimental points in this manner has the advan- 

tage that, regardless of the value of the heat leak Q;IL' the experimental 

values of F a re  compared to a single straight line passing throcgh the 

origin. 

V s 

The heat leak Q;IL in equation (8) i s  the heat leak during the 

period of solid formation. 

Q corresponding to  the liquid level in  the dewar from figure 7. 

It is calculated by picking the heat leak rate  
0 

0 

= Q x solid formation time. QHL 

I 
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6. Experimental Results 

The measured values of the mass fraction of the initial liquid 

which is removed in pumping down to the tr iple point a r e  given in Table 

111. 

Section 5. 1. 

The values of (m /m) a r e  calculated as described in  
g predicted 

Table IV and figures 8, 9 and 10 give the experimental values of 

the mass  fraction of triple-point liquid pumped off to  form a mixture of 

quality F. The adjusted quality 

is plotted in the figures (see Section 5. 6. ). 

value of F’ is obtained from equation (8), Section 5. 6. 

The line giving the predicted 

Table 111 

Mass Fraction-Pump Down To Triple Point 

Initial 
Pressure  Heat Leak-Q/m mg/m 

Run No. (mm Hg) (joule s/g -mole) Predicted Experimental 

2/2 1 /6 6 - A 735.9 3. 67 0.1073 0.1079 

2/2 1 / 66- B 727.4  3. 22 0. 1061  0.1027 

2/23/66 730.9  3. 38 0. 1067 0.1005 
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7. Discussion of the Results 

7.1. Pump down to the triple point 

value 

. 

The standard deviation of the three points (adjusted to  the same 

) from their mean value is 2.6 percent of m /m. 
Of (mg/m)predicted - g  

The standard deviation of the experimental values of m /m from the 

predicted values of m /m is 4.0 percent. The mean value of 

The small  
(m g’m)expe r im e nt a1 g theoretical’ 
number of experimental points may be one source of the disagreement in 

the results since an e r r o r  in one of the measurements would have a 

significant effect on the standard deviation. 

the disagreement between the experimental and predicted results a r e  as 

follows : 

g 

g 
is 2.8 percent below (m /m) 

Other possible sources of 

1. The uncertainty in the theoretical calculation could be as high 

as 1 . 6  percent. 

liquid entropy between one atmosphere and the triple point is f 0.048 

joules/g-mole [ Roder et al . ,  19651. 

value of m /m, resulting from the uncertainties in the entropy values 

used is 1. 1 percent. There is an additionai uriCertzi&-,ty, ~rhich is esti-  

mated at 0. 5 percent, due to  the approximate nature of the calculation 

procedure for m /m. 

The uncertainty in the value of the change in the saturated 

The uncertainty in the calculated 

!z 

g 

2. The uncertainty in  the determination of m /m, as given 

previously, is about f 1.5 percent for this part of the experiment. 
g 

3. The uncertainty in determining the edge of the triple-point 

region is estimated to  cause an uncertainty f 0 . 3  percent in m /m. 
g 

4. Some uncertainty exists in the heat leak rate  during this portion 

of the experiment since the conditions a re  different from those under which 

the heat leak was measured. 

wall, while the recession of the liquid level by 70 to  80 mm results in a 

The high rate  of vapor flow cools the dewar 
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dewar wall section above the liquid with a smaller  temperature gradient. 

Since the primary source of heat leak is by solid conduction down the dewar 

walls, the total  heat leak into the dewar should be reduced. 

to measure this reduction in the heat leak was made by comparing the heat 

input from the heater to  the mass of vapor given off at a flow rate com- 

parable to  that experienced during the pump down. 

were inconclusive since the difference was beyond the experimental accu- 

racy. However, as an estimate of the possible magnitude of this effect, a 

50 percent reduction in the conduction into the liquid would cause a 1. 3 

percent reduction in the theoretical value of m /m. 

An attempt 

The results of the tests 

g 

To summarize, the possible sources of e r r o r  a r e  as follows: 

1. Theoretical calculation f 1 . 6 %  

2. m /m g exp 

3.  Triple-point boundary 

4. Heat leak 

f 1. 5% 

Total possible disagreement f 4. 7 O h  

The 4 percent standard deviation of the experimental m /m f rom the 

predicted m /m is within the limits of the experimental e r r o r .  

desired to  predict the quality from the mass fraction which iiicludes the 

pump down to the triple point, greater accuracy is desired. The effect 

of this e r r o r  is discussed in section 8. 

g 
If it is 

g 

7. 2. Quality measurements 

The standard deviations and the maximum deviations of the 

experimental qualities from the predicted qualities in t e r m s  of the adjusted 

quality F, a r e  as follows: 
1 

1. Calorimetric Method A F' 

Standard deviation 0.011 

Maximum deviation 0 . 0 2 5  
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2. Volumetric Method - freezing A F‘ 

Standard deviation 0.014 

Maximum deviation 0.034 

3. Volumetric Method - melting A F’ 

Standard deviation 0.011 

Maximum deviation 0.034 

Some of the sources of experimental uncertainties have been 

discussed previously. They are summarized as follows: 

Po s s ible Experiment a1 Err or s 

Gas measurement f 0.5% 

Total liquid volume f 0.5% 

Changes in liquid volume 

Heater energy f 0.8% 

Triple -point boundary 

Heat leak rate  

The uncertainties in the values used for (s  

f 0. 008 l i ters  

f 0.004 in t e rms  of the quality F 

f 0. 1 watt 

- s ) [ Roder et al., v - e  
iy48j are i 0 3 --*t-nnt 19651, (st - s ) and ( v ~  - v ) [ Woolley et al., . b r u * - w - - ,  

S S 

f 0.5 percent and f 3 percent respectively. 

The standard deviations of the experimentally determined F’s 

from the predicted values lie well within the limits of the experimental 

e r ro r .  

mum experimental e r ror .  

The maximum deviations are about the same as estimated maxi- 

Reference to  Table IV shows that these maximum deviations occur 

in runs two and three of 2/23/66 with opposite sign. 

a n  e r r o r  in reading the flowmeter, missing the triple-point boundary, or 

a combination of e r r o r s  may have occurred in the experiment at this point. 

This suggests that 
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Any deviations of the t rue value of F' from the predicted value of 

F' should be due either to  

1) irreversibil i t ies in the freeze-thaw process 

2) e r r o r s  in the thermodynamic properties used, or 

3) use of an incorrect model for the process. 

Only l), would cause scatter in the data, and this scatter should be small 

compared to the total magnitude of the irreversibility. 

If each ser ies  of solid formations a r e  considered as a single run, 

the e r r o r  due to  missing the edge of the triple-point region and incorrect 

meter reading will be reduced, and a better idea gained of the t rue de- 

viation of F' experimental f rom F' predicted. 

data in this manner. 

Table V presents the 

In some of the runs, pieces of solid were frozen to  the dewar wall 

and the st irring shaft above the liquid level when the measurement of the 

liquid level w a s  made at the end of the solid formation. 

at least  some of the difference between the values of F' 

This accounts for 

and F I v 2 .  v l  

. 
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Table V 

Consideration Of A Series Of Runs As A Single Run 

(FI - F I T >  

C F I T  F I T  

Calorimetric Method 

1/21/66-A 

1/21/66-B 

1/23/66 

All Runs 

-. 040 

-. 008 

-. 019 

-. 019 

Volumetric Method - freezing 

All Runs t. 020 

Volumetric Method - melting 

All Runs -. 005 

0.577 

0.932 

2.002 

3. 511 

3. 511 

3 .  511 

It is concluded, then, that 

1) no significant irreversibilities occur in the freeze-thaw 

p r  oce s s, 

the quality may be predicted to  at least 0.011 from the mass 

fraction removed, and 

the e r r o r  in predicting the quality by this method is less than 

2 percent for a quality of 0. 50. 

2) 

3) 

. 
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7 .  3.  Observations 

The 15 cfm pump used in the experiment seemed to  be marginal 

for the freeze-thaw process. 

action at the surface of the liquid which is required. 

was used with liquid nitrogen (with a mass removal rate about 1. 7 t imes 

that of H ) in preliminary tes ts ,  the surface action seemed satisfactory. 

The pumping rate to  surface area ratio for the apparatus is 77 cfm/ft . 

It was difficult to  consistently get the violent 

When the apparatus 

2 2 

The maximum liquid-solid quality attained during the experiments 

T o  achieve this concentration it was necessary to  stop the was 0.39. 

st irring motor for most of the last half of the solid formation period in 

order t o  allow the slush to  settle. 

the end of the slush formation period, about 5 percent of the volume below 

the liquid-vapor interface was clear liquid. Attempts to  predict the maxi- 

mum quality a r e  difficult for short settling t imes.  

When the measurements were made at 

It is recommended that the insertion of tubes into the liquid be 

avoided since large heat leaks may result f rom the oscillation of the liquid 

inside the tube. Heat leaks as large as 8 watts can occur down a 1/4-inch 

tube. 
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8. Conclusions 

The most accurate determination of the quality requires an inde- 

pendent determination of the triple-point boundary. 

fraction of the initial liquid which is removed in pumping down t o  the 

tr iple point is almost twice that required to  form a mixture of 0.5 quality, 

once at the tr iple point, e r r o r s  in  determining the flow will be magnified 

in the determination of the quality. In addition, there is a 3 percent dif- 

ference between the average experimental and theoretical mass  require- 

ment for the pump down. 

Since the mass 

An independent determination of the boundary of the triple point 

region, for instance by measuring the pressure in the production dewar, 

largely eliminates this difficulty. 

triple point by the vapor pressure results in an e r r o r  in the quality of 

only 0.003 o r  about 1/20 the e r ro r  that might easily occur when starting 

the vapor measurement from 1 atm. 

A 1-mm Hg e r r o r  in determining the 

Prediction of the quality by measuring the mass fraction of the 

gas  pumped off once at the ‘iriplz p o k t  q p c a r s  to  be an accurate and 

practical method of quality measurement. 

qualities agree with the predicted qualities to  within 2 percent. 

significant irreversibilities appear to occur in the freeze-thaw process. 

The primary sources of e r ro r  in this method a r e  the e r r o r s  in the flow 

measurement and the liquid volume measurement. 

The experimentally measured 

No 

For large scale applications flow and volume meters  will be less  

As an example, accurate than those used in this laboratory experiment. 

for  a flowmeter accurate t o  f 2 percent and a liquid volume measurement 

accurate to  f 2 percent, the maximum uncertainty in the quality of a 0. 50 

solid mixture would be 0.030, 0.010 of this being the maxim& uncer- 

tainty i f  the flow and volume are known exactly. This 0.030 uncertainty 
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in the quality contributes an uncertainty of 0. 36 percent in the deter-  

mination of the total mass  held in a container. For  a container holding 

10, 000 gallons, a maximum e r r o r  in the estimated weight of 24 pounds 

would resul t .  

In conclusion, measurement of the mass  fraction pumped off 

during the freeze-thaw process provides a simple, non-destructive and 

accurate method of quality determination. 

advantages : 

It offers the following 

1. 

2. 

3. 

4. 

It requires the measurement of only 

a) the mass of the vapor pumped off, 

b) the liquid mass  either before or after pumping, and 

c) the heat leak into the dewar. 

It i s  non-destructive, i. e . ,  it does not require melting the 

slush. 

It requires no viewports or apparatus inside the dewar, with 

the exception of a liquid level indicator. 

It does not require a homogeneous distribution of the solid. 

Since this method measures the bulk quality, it is not good for  

cases  in which a partial transfer from the dewar is made. 

is stored for long periods, the uncertainty in the quality will be increased 

due to  uncertainties in the heat leak into the dewar. 

method is  only as  accurate as the accuracy of the flow and liquid volume 

measurement, possible low accuracy in large volume gas flowmeters 

places a restriction on the method. 

If the slush 

Finally, since the 
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11. Appendix 

11.1. Quality determinations 

In the freeze-thaw method of forming a triple-point mixture 

of hydrogen, a quantity of liquid hydrogen is partially evaporated 

under the reduced pressure maintained by a vacuum pump. 

eration effect, which is approximately equal to  the latent heat of 

vaporization, is experienced by the remaining liquid or liquid-s olid 

mixture. By specifying the initial state and the process or path 

followed, it is possible to  predict the end state, i. e . ,  the liquid-solid 

quality as a function of the mass of the vapor removed. 

A refrig- 

Figure 11 shows the path of the processes, on a temperature- 

entropy diagram, when the material  in a constant volume container is 

considered. 

point, process 1 -2, and then solid is formed, process 2 - 3". 

Saturated liquid at 1 atmosphere is cooled to  the tr iple 

11.1.1. Expansion to the tr iple point 

Process 1 -2  may be analyzed by considering a control volume 

around a container init'ria?>j f i l l e d  with liquid hydrogen at one atmos- 

phere. 

leaving dm 

For  a reversible process with heat transfer dq and mass 

the expression for the entropy in the control volume is 
i' 

2 2 
d q =  S 2 t s ,  s d m . .  

'1 tsl T vi 1 

Since the evaluation of 

2 
s dm. J1 vi 1 

requires  solution of the problem at hand, it is necessary to  consider a 

se r i e s  of incremental expansions and replace the mass average entropy 

of the gas leaving by the arithmetic mean entropy. For such an incre- 

mental step, equation (A?) m q r  he rewritten as: 
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. 
- dq t m g l S g l + m  = m g 2 s g 2  tm s tAm S vl vl v2 v2 1 -2 avg, T 

where 
s t s  

2 
vl v2 - - S 

avg 

With the specification of the conservation of mass,  

1 - 2  ' t m  - t Am "41 vl - "42 tmv2 

and the requirement of constant volume 

m v  
0 0  

t m  v = 
" 4 2  "42 v2 v2 

m 
0 

V 
0 

, and 

the expansion process is  defined and equations (A2) through (A5) may be 

Am 

m . The sirhscripts 1 and 2 refer  to the "P, 2 1 -2  

"4 1 
solved for - and 

.el 

initial and final states for any incremental step, not the initial and 

final steps of the complete expansion. 

initial conditions at 1 atm., state 1 on figure 11. 

expr e s s ions a r e  

The subscript o re fers  t o  the 

The resulting 

dq 
1 , (Ab) 

- -.-) 
v2 41 "41 

m 

m 
- -  - 4 2  

.e .I v4 2 
v2 - 2s42) v i S V 2  - sv l )  

v2 
(Svl 
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where 

and 

Am (scl - sLz) t ( 1  - 3)  dq/mtlT t R 2  
(AB) 

V = 2  v2 1-2 

"4 1 

v l  v2 

whe r e 

- V.2) ] 
V v. 2 

m v  V 
0 0  v2 

v l  - ( 1  -,)sv2t( v l  V v l  v l  
v2 

1 vt 1 +3[( V 1 - - )  V v l  s v2 - 
v2 

V 

- vE") ]  . - ( V 
.+ 2 L  [A vv2 

vl 
v l  

V V s. 2 
v2 vl  

If only an approximate solution is desired, equations (A6) and 

(A9) may be simplified to  

( s  t s  - 2 s  - 2dq/mJlT)  
(A1 0) ". 2 v l  v2 41 - =  

v2 

and 
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Am 
Equations (A8), (AlO), and ( A l l )  give a value of 0.106 for - 0- 1 

m '  
0 

the fraction of the initial mass  vaporized in going from 1 atm 

tr iple  point, for the case  of zero heat leak. 

f rom the simplification of the expressions is estimated at l ess  than 

one percent. The parahydrogen properties used a r e  those reported 

by Roder, Weber, and Goodwin [ 19631 and Roder [ 19641. 

to the 

The e r r o r  resulting 

The specification of the heat leak dq could pose a problem if dq 

were sufficiently large. 

expected to  be encountered, however, the assumption that Q is distri-  

buted evenly over the temperature range, i. e. ,  

For the low ra tes  of heat leak that a r e  

Ti Ti t 1 
T - T1 = Q  
0 

dqi' (i + 1) 

will  give sufficiently accurate results. The minimum change in  

entropy would occur i f  al l  the heat were added at temperature T and 

the maximum entropy change would occur i f  it were added at temper- 

ature T 

having a heat leak equivalent t o  a loss of one percent of the liquid per 

day, Q/m would be 0.38 joules/gram mole and the maximum possible 

e r r o r  introduced in the determination of m 

would be 0.05 percent for hydrogen. 

considerably smaller.  

the process would result in proportionately larger  e r ro r s .  

1 

If process 1 - 2 weic to require one hour in a vessel  
2' 

by using equation (A12) 
V 

The actual e r r o r  would be 

Larger rates of heat leak or larger  times for 

11. 1. 2. Formation of solid at the tr iple point 

Since the formation of solid at the triple-point, process 2 - 3", 

takes place at constant temperature and pressure,  the process may be 

analyzed by considering a system contained by a piston and cylinder. 

If no heat is t rzzs fer red  to the system and the process takes place 
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reversibly, then as the piston is drawn out, the hydrogen expands 

with no change in entropy. For  this closed system, the end of the 

expansion with some quality F is denoted by state 3' at the same 

entropy as state 2. 

takes place with an increase in entropy to  state 3. The change in the 

specific entropy of the system, due to  the addition of heat, is 

If there is heat added to  the system, the expansion 

Q A S  = - 
mT 

At state 3, the entropy of the individual phases is  equal to the total 

entropy of the system and the total mass  equal to  the sum of the 

masses  of the individual phases, so that 

Q t s  m t s  m = m s 2  t T , S4tm43 vt v3 st s 3  

m e 3 t m  t m  = m , 
v3 s3 

and the quality F is defined as  

m 
S = F .  

m t mt 
S 

In order to  separate the calculations for process 2 - 3, f rom 

those for process 1 - 2, assume state 2 is pure liquid at the triple 

point. Then s becomes s and 2 et 

Figure 12 gives the mass of vapor mJm vs. the quality F. 

. 

' I  
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The quantity of vapor calculated by equation (Al6)  i s  the total 

amount of vapor formed, not the amount that would be removed from a 

container such as a dewar. A volume of vapor equal to  the decrease 

in the volume of the liquid and solid phases remains in the container. 

The e r r o r  resulting from the use of equation ( A l 6 )  is approximately 

equal to  ratio of the specific volumes of the liquid to  vapor phase 

is 1/608. Unless accuracies better than t For hydrogen, - 
vt  

%t . - 
V 

vt 
V 

1/2 percent a r e  desired, equation (A16) may be used without correction. 

i 50 

11.1, 3. Experimental determination of the liquid-solid quality 

Two methods will be used to  experimentally determine the 

quality of a mixture of liquid and solid hydrogen. 

be carr ied out as successive operations in the same apparatus. 

13 is a schematic diagram of the experimental arrangement. 

Both methods can 

Figure 

11.1.3.1. Volumetric method 

When only the liquid and solid phases of a triple-point mixture 

a r e  considered, the density of the two phases depends only on the 

quality. This provides a means for determining the quality which 

depends only on mass and volume measurements. 

required a r e  as follows: 

The measurements 

1. The mass of the liquid hydrogen at zero quality is 

determined by measuring the level of the liquid with 

a cathetometer after the dewar has been volume 

calibrated. 

The decrease in the mass  of the liquid-solid mixture 

is  determined by measuring the volume of gas 

leaving the dewar with a flowmeter. 

2. 
a 



. 

n 
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3. The change in volume of the mixture in going from 

zero quality to  the quality F is determined by 

measuring the change in the level in the dewar with 

a cathetometer. 

The quality F is then determined from the expression 

AV t v4 m 
s (A171 

V F =  
("s - %) ( - mv ) 

where m is the initial mass ,  m 

the change in volume of the mixture. 

the mass  of vapor removed,and AV 
V 

11.1. 3. 2. Calorimetric method 

After the measurement of the quality by the volumetric method, 

the heater wi l l  be turned on until the solid just disappears, the heat 

being measured by a wattmeter. 

figure 11. 

be determined from the expression 

The process follows the path 3 - 4 on 

The quality of the liquid-solid mixture at the state 3 can then 

m 
- - -  v4 ( sd - S4t) Q 
mT m F =  t 

.et s t  
s - s  

where m 

is the mass at state 3 and Q i s  the heat introduced by the heater plus 

the heat leak. 

the process, so m 

3 to  4. 

is the mass of the vapor pumped off during the heating, m 
v4 

It should not be necessary to  pump on the dewar during 

would be zero and m would remain constant f rom 
v4 

Equation ( A l 6 )  evaluated for F = 0 gives 

= s - s  Q 
v3 

m T  vt  .et * 
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If Q is taken as the total heat introduced since the beginning of the 

solid formation, and m 

the equation (A19) should hold. If values of s - s obtained from 

equation (Al9) differ consistently from the accepted values, then the 

values obtained from equation (A19) will probably give the best esti- 

mates of F when used in equation (Al6). 

is the total amount of vapor given off, then 
v3 

vt  .et 

It is possible to  estimate the liquid-solid quality by measuring 

the total mass  of vapor removed from the system in going from state 1 

to  state 3 through the use of equations (A8), ( A l l ) ,  and (Al6). 

if  the arr ival  at state 2, the edge of the triple-point region, is estab- 

lished by measuring the temperature of the liquid, and/or visual 

observation for the presence of solid, then the uncertainties in the 

estimation of the quality F should be reduced. By measuring the vapor 

pressure in the dewar with a mercury manometer, the temperature may 

be determined from established values of vapor pressure versus tem- 

perature at saturation. 

However, 

c 
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11. 2 Experimental data 

2/21/66-Run A 

Barometer 

Level of dewar top plate 

Heat leak test 

Time for 10 liters of gas to boil off 

Pump down to the tr iple point 

Flowmeter (start) 

Liquid level (start) 

Dewar pressure (start) - gauge 

Flowmeter temperature 

Flowmeter pressure  (gauge) 

Flowmeter (finish) 

Liquid level (finish) 

Elapsed t ime 

Solid formation 

Flowmeter - finish (l i ters) 

Flowmeter temperature ( O F )  

Flowmeter pressure (mm water) 

Liquid level (finish) (mm) 

Elasped time (minutes) 

Fraction of settled slush 

Solid Melting 

Volts 

Amps 

632.9 mm Hg 

731.40 m m  

5 min. 44 sec. 

0000.0 

239.14 mm 

103 m m  Hg 

73°F  

10 mm water 

844. 5 l i ters  

168.14 mm 

15 min. 

Run #1 

1032.9 

73 

2 

152.48 

26 

3/4 

32. 8 

0.462 

Heater time (total) (minutes:seconds) 

Liquid level 159. 21 

5: 5 

Elapsed time (minutes) 34 

Run # 2  

1177. 5 

73. 5 

2 

147.60 

43 

2/3 

31.1 

0.438 

9:31 

152.20 

50 

J 

r- 

Run #3 

1364.9 

74 

2 

137.04 

61 

7/8 

28. 5 

0,405 

15: 53 

143.74 

72 

54 



r 

a 

2/21/66-Run B 

Barometer 

Level of dewar top plate 

Pump down to  the tr iple point 

Flowmeter (start)  

Liquid level (start)  

Dewar pressure 

Flowmeter temperature 

Flowmeter pressure (gauge) 

Flowmeter (finish) 

Liquid level (finish) 

Elapsed t ime 

Solid formation Run #1 

1124. 2 Flowmeter - finish (liters) 

Flowmeter temp. (OF) 74. 5 

Flcwmeter pres. (mm H20) 2 

Liquid level (finish) (mm) 197.28 

Elapsed time (minutes) 24 

Fraction of settled slush 3/4 

Solid melting 

Volts 29.2 

b P S  0.413 

Heater t ime (min:sec) 6:15 

Liquid level (mm) 203.82 

Elapsed time (minutes) 33 

632.4 mm Hg 

731.40 mm 

000.0 

289.05 m m  

95 m m  Hg 

74.5"F 

10 mm water 

940. 3 liters 

211.89 

14 min. 

Run #2 Run #3 

1290.5 1447.0 

74.5 74. 5 

2 2 

190.28 183.52. 

44 62 

2/3 2/3 

29.3 29.2 

0.413 0.413 

11:43 17:3 

195.95 188.80 

52 70 

Run #4 

1673.7 

74. 5 

2 

170.66 

81 

7/8 

29. 5 

0.418 

24: 3 6 
178.22 

91 
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2/23/6 6 

Barometer  

Level  of dewar top  plate 

Pump down to the  triple point 

Flowmeter  (start) 

Liquid leve l  (start) 

Dewar p r e s s u r e  (start) - gauge 

Flowmeter  t empera tu re  

Flowmeter  p r e s s u r e  - gauge 

Flowmet e r (finish) 

Liquid level  

Elapsed  t i m e  

Solid formation Run #1 

Flowmeter - f inish (liters) 1219.1 

F lowmeter  temp. (OF) 70. 5 

Flowmeter  pres. (mm H 0) 2 

Liquid level (finish) (mm) 209.32 
2 

Elapsed  t ime (minutes)  35 

Frac t ion  of se t t led  s lush  3/4 

Solid melt ing 

Volts 29.2 

Amps 0.41 3 

Heater  t ime (min:sec) 10: 28 

Liquid level (mm) 219.75 

Elapsed  t ime (minutes)  48 

629.9 mm Hg 

731.40 

000.0 

315. 55 

101 mm Hg 

69. 5 

10 mm water  

965.6 

234.95 

14. 5 min. 

Run # 2  

1751.1 

73.0 

2 

182.84 

77 

19/20 

29. 3 

0.414 

25:32 

198.14 

94 

Run #3 

2190.2 

73. 6 

2 

164.32 

120 

19/20 

29. 5 

0.416 

39:40 

178.88 

137 

Run #4 

2439.4 

73.5 

2 

158.20 

150 

3/4 

29. 5 

0.416 

48: 18 

167. 65 

161 . 
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Solid formation 

Flowmeter - finish (liters) 

Flowmeter temp. ( O F )  

Flowmeter pres.  (mm H 0) 

Liquid level (finish) (mm) 

Elapsed time (minutes) 

Fraction of settled slush 

2 

Solid melting 

Volts 

h P S  

Heater time (min:sec) 

Liquid level (mm) 

Elapsed time (minutes) 

Solid formation 

Flowmeter - finish (liters) 

( O F )  
E -’ I vWLLl r” r . -  -----ntot. temp. 

Flowmeter pres. (mm H 0) 2 
Liquid level (finish) (mm) 

Elapsed time (minutes) 

Fraction of settled slush 

Solid melting 

Volts 

h P S  

Heater time (min:sec) 

Liquid level (mm) 

Elapsed time (minutes) 

Run #5 

2592. 5 

74.2 

2 

155.10 

170 

213 

29.2 

0.413 

53: 52 

160.75 

177 

Run #9 

2950.2 

74. 5 

2 

141.73 

216 

1 /2  

29.3 

0.413 

8: 27 

144.60 

222 

Run #6 

2689.6 

74.2 

2 

152.72 

183 

1/2 

156.48 

188 

Run # l o  
3070.6 

74. 5 

2 

134.71 

228 

1/2 

29. 5 

0.414 

12: 22 

138.62 

23 5 

Run #7 

2790.7 

74.1 

2 

148.58 

195 

1/2 

29.4 

0.415 

3:17 

151.65 

200.5 

Run #8 

2870.9 

74 

2 

145.60 

206 

1/2 

29. 5 

0.416 

5: 52 

148.45 

21 1 
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